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The tempo-spatial patterns of Covid-19 infections are a result of
nested personal, societal, and political decisions that involve com-
plicated epidemiological dynamics across overlapping spatial scales.
High infection “hotspots” interspersed within regions where infec-
tions remained sporadic were ubiquitous early in the outbreak, but
the spatial signature of the infection evolved to affect most regions
equally, albeit with distinct temporal patterns. The sparseness of
Covid-19 infections in the United States was analyzed at scales span-
ning from 10 to 2,600 km (county to continental scale). Spatial evo-
lution of Covid-19 cases in the United States followed multifractal
scaling. A rapid increase in the spatial correlation was identified
early in the outbreak (March to April). Then, the increase continued
at a slower rate and approached the spatial correlation of human
population. Instead of adopting agent-based models that require
tracking of individuals, a kernel-modulated approach is developed
to characterize the dynamic spreading of disease in a multifractal
distributed susceptible population. Multiphase Covid-19 epidemics
were reasonably reproduced by the proposed kernel-modulated
susceptible–infectious–recovered (SIR) model. The work explained
the fact that while the reproduction number was reduced due to
nonpharmaceutical interventions (e.g., masks, social distancing,
etc.), subsequent multiple epidemic waves still occurred; this was
due to an increase in susceptible population flow following a re-
laxation of travel restrictions and corollary stay-at-home orders.
This study provides an original interpretation of Covid-19 spread
together with a pragmatic approach that can be imminently used
to capture the spatial intermittency at all epidemiologically rele-
vant scales while preserving the “disordered” spatial pattern of
infectious cases.

coronavirus disease | susceptible–infectious–recovered approach |
multifractals | Fourier analysis | population agglomeration

Covid-19 has become a serious global health threat due to its
rapid spatial spread. In the United States alone, as of Feb-

ruary 2021, over 480,000 deaths and nearly 28,000,000 infected
cases have been confirmed since the outbreak of the disease in
March 2020 (1). The tempo-spatial evolution of Covid-19 cases
involves complex epidemiological dynamics as a result of nested
personal, societal, and political decisions. Numerous studies have
identified spatially heterogeneous distributions of Covid-19 cases
and deaths over a wide range of scales (1–3). Thus, an under-
standing of the Covid-19 outbreak from a spatial perspective is
necessary (though not sufficient) to evaluate the nationwide
spread of disease and delineate the correlations across different
regions. Geographic information system–based spatial analyses
have been performed, aiding in the visualization of how the spatial
structure and interconnections between the US cities or states
impact the incidence of the disease (4–7). However, these studies
are primarily focused on relating spatial variability of the disease
incidence to exogeneous environmental, socioeconomic, and de-
mographic factors. Endogenous mechanisms of the epidemic
spreading across the continental United States over a wide range
of scales still remains to be uncovered.

The risk of inoculation against smallpox marked the birth of
“static” epidemiological models, which have been developed by
Jean-Baptiste le Rond d’Alembert and Daniel Bernoulli in the
18th century (8). Moving from a static compartment framework
toward a dynamic representation of disease spread has been a
long and tortuous path achieved during the early 1920s (9). This
framework is now routinely used to describe disease transmission
for planning effective control strategies (10–15). The backbone
of this framework is a dynamical system labeled as the susceptible–
infectious–removed, or recovered (SIR), approach, in which suscep-
tible individuals could become infected and are eventually “removed”
from the pool through recovery or death (15). A key parameter of
such models is a reproduction number, which has been identified as
an essential measure of the risk of an infectious agent with respect to
epidemic spread. There are multiple reproduction numbers in use
depending on the particulars of model formulation: in a closed sys-
tem, the basic reproduction number (Ro) defines the average number
of secondary infections produced by a typical case of an infection in a
population where all the individuals are treated as susceptible.
However, due to immunity from past exposures or vaccination, or any
deliberate intervention to curtail disease transmission, the actual av-
erage number of secondary infections per infectious case would be
lower than the basic reproduction number; this is often referred to as
the effective reproduction number (Re). Numerous studies have been
conducted to estimate the reproduction number since the outbreak of
coronavirus disease. An uncontrolled Ro = 4.5 across many nations
was identified in the early phases before any interventions when
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setting the mean recovery time to 14 d (16). Time-varying esti-
mation of Re has also been conducted, which often requires in-
formation on the distribution of the serial interval and number of
daily cases (17–20). A daily updated estimation of Re shows that
the reproduction number is still larger than 1.0 in most of the US
states till the end of 2020 regardless of continuous precaution
and prevention of the disease (https://rt.live/). Modeling the
Covid-19 spread has been conducted and published since March
2020 (21–23). These studies fitted time series of infectious indi-
viduals for specific locations following the outbreak of Covid-19 in
China. Movement of individuals between cities was introduced by
linking the SIR framework to agent-based network models (24,
25). Empirical models such as the one adopted by the University
of Washington were also routinely employed, which often need to
be regularly calibrated, including recalibration of Re, to reproduce
the newly acquired data and anticipated policies (26). Some of the
models are developed for representing Covid-19 data at a large

scale (e.g., a metropolitan or continental scale) and therefore
become impractical as the spatial resolution is increased to be-
low a certain scale (e.g., 100 km at the county scale) due to a
proportional relationship between the connectivity and the
squared number of communities. In addition, there are chal-
lenges in acquiring sufficient traveler’s data for such agent-based
network models due to confidentiality concerns with the tracking
and usage of an individual’s mobility information (27, 28). These
models might also encounter equifinality problems in which dif-
ferent combinations of parameter values generate equal results
when the number of connections between locations increases. Dif-
fusion dynamics have a long and proven tradition to represent hu-
man mobility and the spatial transmission of the disease among
local-scale neighboring regions. Their success is featured by pre-
dicting a spread velocity representing an epidemic wave front (29,
30). Finally, neither of these models incorporate the intrinsic
properties of the population nor the spatial structure of the disease,
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Fig. 1. (A) The qmoments of the Covid-19 cases and their scaling from 10 up to 2,600 km used in the determination of K(q). (B) The moment scaling function
K(q); the convex shape indicates multifractality. (C) The fitted spectral slope at various dates. (D) Example multifractal field generated using the UM model
using the parameter values estimated from the population. Notice that both K(q) and Fourier spectral slope approach that of the underlying population,
indicating increased spatial correlation that trends toward a “saturated” threshold set by the population agglomeration.
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both attributes important for stability of prediction and for
intervention planning.
Herein, spatial analysis of the Covid-19 infectious cases was

performed in the United States at the county scale over time,
revealing a dynamic multifractal scaling in the spatial correlation.
This scaling spans from 10 to 2,600 km, consistently trending to-
ward that of the population (Fig. 1). A kernel-modulated SIR
model mapped onto a multifractal population framework is de-
veloped to explore tempo-spatial variation patterns of the infec-
tions across the continental United States (Fig. 2). The susceptible
population was viewed as consisting of multiple segregated sets,
representing quarantine and mobility, to reflect the multistage
conditional reopening policy implemented late April to early June
2020 in the United States. The model also reliably reproduces
observed long-range spatial correlation of Covid-19 cases evolving
with time, compared to diffusion-modulated and immobile (i.e., each
county is assumed to be a closed compartment following early in-
fections) SIR models (Fig. 3). Sensitivity tests indicate that the evo-
lution patterns of Covid-19 cases for all the US states could be
generally retrieved from the model (Fig. 4). Of significance is that the
proposed model preserves the so-called “disordered” infectious pat-
terns featured by boundaries delineating hotspots of infections from
disease-free regions. Such a representation unravels the interaction
among spatial scales responsible for the spread of the disease across
the continental United States.

Results
Daily moment analysis of the infected Covid-19 cases during
March 22 to October 14 2020 reveals a multifractal scaling that
spanned from 10 to 2,600 km (Fig. 1A and SI Appendix, Fig.

S1–S8). The calculated orders of the moments demonstrate large
divergence early in the outbreak through March to April and
become nearly identical at all spatial scales after May, which
suggests that the spatial correlation by then approached a sta-
tionary set. This is because after travel restrictions and corollary
stay-at-home orders, the spatial evolution of infections was pri-
marily controlled by the spatial patterns of the population. As
the spatial patterns of the Covid-19 cases approach that of the
population, the underlying statistics of the spatial spread of the
disease tends to become stationary, set by the spatial distribution
of the population. The human population was also identified to
be multifractal distributed (SI Appendix, Fig. S1), which is con-
sistent with prior findings (31). We revealed herein that the
multifractal scaling of the population and Covid-19 cases oper-
ated over the same range of spatial scales. Power-law scaling was
also reported for several properties of urban systems such as city
sizes (32). Signatures of multifractal characteristics are routinely
detected using the convexity of the so-called moment scaling
function K(q) for moment order q. Three parameters describe the
mathematical properties of K(q) in the universal multifractal
(UM) model (33, 34): α, the Levy index measuring departure from
monofractal behavior defined by α=0; c1, the codimension pa-
rameter measuring the degree of intermittency; and H, the Hurst
exponent linked to the degree of scale invariant smoothing. For
the US population, K(q) shows a convex shape (upward looking),
indicating a multifractality of the population variation over space
(SI Appendix, Fig. S1). The population α, c1, and H are estimated
to be 1.78, 0.15, and 0.21, respectively. The convex shape of the
observed daily moment scaling exponents for the Covid-19 cases is
consistently calculated over the entire period of our study from
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Fig. 2. (A) Schematics of kernel-based model, diffusion-based model, and immobile model. Label 1 represents the spreading mechanism of the diffusion-
based model that is driven by the concentration gradient between two adjacent cells. Label 2 represents a more realistic spreading mechanism of the kernel-
based model that allows individuals to “travel” beyond one cell with a Gaussian-distributed probability. Label 3 represents the spreading mechanism of the
immobile model that each cell is well mixed but isolated from other cells. (B) Example multifractal field and the new field postprocessed by the Fast Fourier
Transform–based convolution using the Gaussian-distributed kernel function. (C) TSA check point travel numbers for 2020 and 2019 (https://www.tsa.gov/
coronavirus/passenger-throughput) and major US Department of Defense response timeline (https://www.defense.gov/Explore/Spotlight/Coronavirus/DOD-
Response-Timeline/).
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late March to early October as well (Fig. 1B). Similar to the
moments, the calculated scaling moment function K(q) evolves in
time and approaches a nearly stationary set after June (α =1.88,
c1 =0.18, and H =0.33). These results underscore the multifractal
properties of the spatial spread of the infected cases during the
Covid-19 outbreak.
The Fourier power spectrum’s exponent of the Covid-19 cases

(κ) temporally increases from 0.54 to 1.31, trending toward that
of the population value κ =1.26 (Fig. 1C). The exponent’s in-
crease is rapid until mid-May and then slows down. A temporal
increase in κ reflects the fact that the Covid-19 cases tended to
be more spatially correlated with time and eventually became
spatially “distributed” following the spatial correlation structure
of the local population. Such increase in κ with time reflects the
decrease in K(2) (Fig. 1B) as well as the increase in H (Eq. 5),
which experienced an uptick from 0.14 in later March to 0.33 in
early October 2020. The multifractality parameter α of the Covid-
19 cases remains invariant at a value of 1.78 ± 0.10 (SI Appendix,
Fig. S9) and is commensurate with that of the population. In
particular, an α < 2 indicates that the underlying statistics of the
spread of the disease is Levy based and “fatter” than lognormal.
The decrease in α implies the increase in the likelihood of oc-
currence of large numbers of infections. The parameter c1 rep-
resents the degree of spatial intermittency (i.e., on–off activity
patterns in space). For the Covid-19 cases, c1 decreases over time
from 0.42 to 0.18 on October 14 2020, which is higher than the
population c1 = 0.15. As expected, the infectious population is
more spatially intermittent than the overall population across
counties.
Fig. 1D illustrates an example multifractal field created using

the UM model, taking the multifractality of the spatial pop-
ulation distribution as a template for the susceptible groups; the
existence of local-scale spikes implies that the infectious field
behaves non-Gaussian. The simulation results conducted using
the SIR model integrated with a multifractal population framework

demonstrate that the kernel-modulated approach could repro-
duce the spectral slope of the total infected cases evolving to that
of the population with time at all spatial scales (Fig. 3). For the
kernel-modulated model, the spectral slope tends to be flat at
early stages of the disease spread (e.g., within the first 40 d)
(Fig. 3C). Infected cases were initially randomly distributed in
space (random attack points on the multifractal susceptible
population across counties) and therefore are expected to be less
correlated over space. As the disease outbreak progresses by
spatial spreading across counties, the spectral slope increases
and eventually approaches that of the population. Similar be-
havior is also observed for simulated K(q) function (Fig. 3F). By
comparison, the spectral slope for the diffusion-based model
converges to that of the population faster at large scales but becomes
steeper than that of the population at small scales (Fig. 3B). Such a
break in the spectral slope is attributed to the diffusion mechanism
that allows complete mixing among adjacent regions and therefore
elevates the spatial coherence at small scale (whose signature is a
steep spectral slope). In addition, the convergence behavior of K(q) to
that of population is unlikely to be observed from the diffusion-
modulated model (Fig. 3E). The simulation results from the
immobile model exhibiting the convergence behavior for both
spectral slope and K(q) but with a slow pace compared to the
kernel-modulated model (Fig. 3 A and D). This finding is
expected because, for the immobile model, the disease only
spreads within each compartment, and the spread of the disease
across compartments (here, counties) is prohibited.
Temporal evolution of the Covid-19 cases for each US state

along with simulated results are reported in Fig. 4A, spanning the
period from February 15 to October 14 2020. The simulation was
conducted state by state using the kernel-modulated SIR model,
taking into account the multiphase population release mecha-
nism. The calibrated population flow and model parameters are
reported in SI Appendix, Fig. S10 and Table S1. The state-level
evolution of the cases exhibits distinct variations, which can be
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Fig. 3. Temporal evolution of (A–C) power spectral density function and (D–F) moment scaling function K(q) for infected cases derived from the kernel-
based SIR model, diffusion-based SIR model, and immobile SIR model, respectively. The kernel-based SIR model (C and F) better reproduced the spatial
correlation of geographic spread of Covid-19 evolving to that of the underlying population agglomeration compared to the diffusion-based model and
accelerates the spatial correlation trending toward the “saturation” threshold set by the population agglomeration.
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loosely characterized by the number of the infectious peaks and
the period of their occurrence. For example, the states of Con-
necticut, Massachusetts, New Jersey, and New York show a single
peak within the first 100 d after the outbreak, while the states of
Alabama, California, Florida, South Carolina, and Texas show a
single peak after the travel restrictions were partially lifted. In
contrast, the states of Louisiana, Maryland, New Hampshire, and
Utah exhibits two peaks before and after travel restriction was

partially lifted. Some states such as Colorado, Delaware, New
Mexico, Ohio, Washington, and Puerto Rico even show multiple
peaks, which can be attributed to a multistage conditional reopen-
ing policy. These distinct patterns are linked to the timeline of each
state’s policy and regulation regarding reopening. For instance, the
state of Alabama ordered residents to stay home for much of April
and began reopening business starting in May. The state of Colo-
rado was among the first states to begin reopening as well, letting

Fig. 4. (A) Observed daily Covid-19 cases for the United States and each US state. Note that the time origin is Feb. 15, 2020, and 7 d moving average is taken
for each US state. (B) Simulated Covid-19 cases using the kernel-based SIR model, taking into account the multiphase population release. Here, we selected
daily confirmed cases reported in the United States, New Jersey, California, and Colorado as representative scenarios showing two peaks occurring before and
after the reopening, with a single peak occurring before the reopening, a single peak occurring after the reopening, and multiple peaks, respectively. Note
that the model acceptably reproduces the US Covid-19 cases. (C) Values of Rb used for the simulations. (D) Calibrated piecewise linear function Fs.
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stay-at-home orders expire on April 26; however, in response to
continuing outbreaks in neighboring states, the state’s “Safer at
Home” phase was extended in July. In September, a new frame-
work to open the state of Colorado was introduced on a more
regional basis. In contrast, the state of New Jersey was the last
state to lift the stay-at-home order on June 9. Nevertheless,
temporal evolution of the Covid-19 cases at the country scale,
taking into account all regions, so far manifests two peaks occur-
ring in April and July, respectively, and starts trending toward its
third peak since September (Fig. 4B). Such temporal evolution
patterns support the multiphase population release mechanism
manipulated by levels of travel restrictions and stay-at-home
phases.
By introducing a multiphase population release mechanism,

the kernel-modulated SIR model reproduces the overall trend of
the Covid-19 cases evolving with time in all US states (Fig. 4 and
SI Appendix, Fig. S10). This representation accommodates for
mobility across counties through ϕ, the percentage of infections
migrating across counties, the disease epidemiological proper-
ties, and the population response to them through a reproduc-
tion number Rb (that differs from Ro or Re) and inverse recovery
times γR, spreading kernel shape p(x, y) in space, and variations
in susceptible population flow from the general population to the
susceptible class in response to county-level lockdowns or
stay-at-home orders. Thus, the evolution pattern of Covid-19
cases can be captured through an appropriate calibration of Rb
reflecting the effectiveness of the precautionary behavior at the
individual scale and the susceptible population flow (i.e., FS)
(Materials and Methods). Sensitivity tests further lend credence
to the peak numbers and the period of their occurrence after the
initial outbreak of Covid-19. It shows that the evolution pattern
of Covid-19 cases is primarily driven by the population flow
(i.e., FS), although other factors (e.g., ϕ and Rb) alter the mag-
nitude of the peaks and shift the period of their occurrence (SI
Appendix, Fig. S11). In particular, sensitivity tests of Rb values for
the period when the stay-at-home order was relaxed show re-
ducing Rb is unlikely to prevent a subsequent outbreak of the
disease due to relatively large releases of the “susceptible”
population back into the “SIR” pool (SI Appendix, Fig. S12). A
critical control of the population flow immediately after the
disease outbreak mitigated the early-stage peak of the infections
(e.g., California). Sustained tight control on the population flow
mitigated the second outbreak of the infections (e.g., New Jer-
sey). A multistage reopening policy resulted and caused the
susceptible population release to perturb infections even when
Rb was reduced below its unrestricted value (e.g., Colorado) (SI
Appendix, Fig. S11). Model results demonstrate links between
the multiphase population release and Covid-19 pandemic. In
particular, the formulation of the population release plays a
primary role in the control of infections; appropriate control on
the population release, corresponding to practical regulation and
policy of travel restriction, can effectively mitigate the subse-
quent wave of the disease. Sensitivity tests reveal that other
measures such as self-quarantine (i.e., reducing ϕ) and masks
and social distancing (i.e., Rb) likely mitigate the infections but
seems to play a lesser role in comparison to the regulation of the
population flow/release.

Discussion
The spatial analysis of the daily Covid-19 cases here revealed
that the spread of the disease follows a dynamic multifractal
scaling across the continental United States spanning from 10 to
2,600 km, consistently trending toward that of the susceptible
population. Multifractal scaling properties, first introduced in
turbulence research, have been widely observed in geophysical
fields that arise as a result of nonlinear processes acting over a
wide range of scales. Examples are plentiful and include rainfall
and cloud fields, temperature fields, roughness of the ocean

surface, and the intrinsic permeability of aquifers (33), among
others. In addition, phenomena such as earthquakes and sea ice
spread as well as human speech have been analyzed and shown
to be multifractal (33). The spread of Covid-19 also obeys a well-
defined multifractal distribution delineated by α =1.78 ± 0.10 in
the UM model. The α is invariant with respect to time and set by
the multifractal distributed susceptible human population in the
United States. This indicates the intrinsic statistics for the spatial
spread of the disease, and the spatial distribution of the pop-
ulation is the same, suggesting population agglomeration could
be a harbinger of the spatial intermittency of Covid-19 when near-
stationary conditions are attained. Daily multifractal results indi-
cate that for the Covid-19 cases, the codimension parameter c1
decreases over time from 0.42 on March 22 to 0.18 on October 14,
2020, which is higher than its population counterpart (c1 =0.15).
Higher codimension values for the Covid-19 cases, compared to
that of the population, indicate stronger spatial intermittency of
the disease occurring at relatively smaller scales.
The spatial epidemic modeling, relying on the SIR formalism,

has been widely employed to represent the spread and control of
infectious disease. Diffusion systems have been extensively used
to describe movements of population and spatial structures in
epidemic transmission (35, 36). The findings here suggest that
employing the diffusion-modulated representation resulting in
traveling waves (37, 38) to simulate rapid “invasion fronts” of
Covid-19 infections might be problematic due to the fact that
diffusion promotes space filling of the whole two-dimensional
space. Such behavior likely removes over time the observed in-
termittency of Covid-19 cases at the finest scales (county
to county).
The results here demonstrate that the kernel-modulated SIR

model integrated within a multifractal population framework can
reasonably reproduce the dynamics of the spatial correlation of
the Covid-19 cases over at least two decades of spatial scales in
comparison to the diffusion-based and immobile SIR models. A
kernel-based approach that incorporates long-distance human
mobility relevant for epidemic spatial spread into the SIR model
incorporates key aspects of the transport network (near and far)
between counties. In recent years, network models have been
extensively developed to delineate interactions among individ-
uals for better characterizing the epidemic spreading (39, 40).
Overwhelming evidences have proved the emergence of complex
and heterogeneous connectivity patterns over a wide range of
scales during the epidemic spreading (15). Therefore, a network-
based epidemic model (e.g., agent based) might encounter chal-
lenge for gathering a sufficient amount of data on social temporal
networks and delivering a timely response or guidance to the
pandemic. In addition, network theories likely focus on the long-
range transport, but might remain “silent” on the long-range
correlation of a susceptible population in space. In contrast,
using the SIR with a kernel is a compromise between the agent-
based and diffusion-based models. The former requires confi-
dential data or data that might not be readily available, while the
latter does not reproduce the observed spatial correlation
structure. The kernel-modulated approach proposed here likely
accommodates the merits of network-modulated models that
support long-range transport while maintaining a local SIR dynamic
at finer spatial scales. In addition, the multifractal population
framework generated herein using the UM model captures the
underlying statistics of the spread of the disease. It allows for a
dynamic evolution of the spatial correlation of the pandemic to that
of the population as observed from the daily Covid-19 data analysis.
The reproduction number is of major significance in epide-

miology to assess the potential for epidemic spread in a sus-
ceptible population. Common reproduction numbers in use are
Ro, often assumed a fixed quantity, and Re, which is pragmati-
cally updated by fitting to the observed data of cases during the
epidemic. We used a transient reproduction number Rb to reflect
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exposure pathways, potency of the disease (infectivity) (41), and
physical constraints to its transmission. Compared to the Re, the
value of Rb adopted herein represents the effectiveness of pre-
cautionary behavior at the individual scale. Individuals taking
preventive measures such as social distancing and wearing masks
will likely reduce the Rb value. The susceptible population flow
Fs(t) reflects collective isolation action (endogenous or exoge-
neous through local or state regulations) to minimize exposure to
the disease. For example, due to a relatively large population
release by relaxing the stay-at-home order, the number of in-
fected cases could still dramatically rise. Thus, Re continues to
increase despite a drastic reduction in Rb. Using this approach,
we elucidated that preventive measures at the individual level
(through wearing masks and social distancing) is not sufficient
for reducing the overall spread of the disease and that govern-
ment policy would need to be factored in terms of opening,
which would increase the flux of susceptibles captured by Fs.
The simulations here reveal that the multiphase population

release mechanism, reflecting differing regulation and policy of
reopening from US states, plays a primary role in explaining the
outbreak of the Covid-19 pandemic (February 15 to October
14 2020). In particular, managing release periods and the rate of
population release to the susceptible category can effectively hinder
Covid-19 infections. Overall, this study provides a perspective for
interpreting the complex tempo-spatial evolution of Covid-19 and
to predict it at numerous spatial scales based on nonpharmaceutical
intervention decisions and without using data requiring tracking
individuals.

Materials and Methods
Multifractals. A geophysical field, G, exhibits scaling if its power spectrum, EG,
has a form

EG ∼ k−κ , [1]

where the sign “∼” implies proportionality, k is the wave number (or inverse
scale) in Fourier space, and κ is the spectral “slope” (i.e., when plotted in
log–log space). Scaling properties of the field G at the support scale λ can be
characterized using the statistical moments of the field:

ÆGqæλ ∼ λ−K(q), [2]

where ÆGqæλ represents the qth order moment, and brackets imply its en-
semble averaging, and the K(q) represents the moment scaling function,
reflecting scaling characteristics of the field. For a multifractal field, K(q)
behaves as a nonlinear convex (i.e., upward looking). We use herein the UM
model (34), which allows for non-Gaussian statistics. In this model, K(q) is
universally described as

K(q) ∼ c1
α − 1

(qα − q), [3]

where multifractality parameter α denotes the underlying statistics of ln(G)
fields (0< α≤ 2); for α =2, ln(G) is Gaussian (or G is log normal), and values of
α less than 2.0 result in the α-stable probability distributions (42). A decrease
in α causes the generated G field to become more “spotty” (or disordered) in
space, where the large values clump together in the field. The parameter c1
denotes the mean field’s codimension and represents the spread from the
mean, and it is equal to half of the variance when the ln(G) field is Gaussian.

In geophysical application, G, is commonly formulated as the following (34):

ÆGqæλ = λK(q)λ−qH = λK(q)−qH, [4]

where the geophysical fields are derived by a fractional integration of the
fields delineated in Eq. 2 at order of H. The parameter H, sometimes known
as the Hurst coefficient, represents the redistribution of singularities with an
average shift of −H. In such a field, the spectral slope κ is expressed as
follows:

κ = 2H + [1 − K(2)]. [5]

The values of H have been found to be 1/3 for homogeneous isotropic tur-
bulence flow fields (43, 44) and becomes an empirical coefficient for other
geophysical fields such as permeability (45) and rain (46). A field with H =

0 (i.e., Eq. 2) is labeled a “conservative” field, attributed to an invariant
mean with respect to spatial scale (47).

The spatial analysis was performed for daily Covid-19 cases reported in the
US counties during March 22 to October 14, 2020. Our analysis focused on
the eastern part of the United States (east of 100° W) at a 10-km scale. The
moments and power spectra of daily Covid-19 cases as well as the total
population in the corresponding counties were calculated to explore the
evolution of their spatial correlations with time (Fig. 1). We acquired daily
Covid-19 cases from Johns Hopkins Coronavirus Resources Center (https://
coronavirus.jhu.edu), last interrogated on October 14, 2020. The corre-
sponding county population was obtained from the US Census Bureau
(https://www.census.gov/data.html). Multifractal fields using “continuous
cascades” (33, 34) were generated based on the estimated UM parameters
for the population and applied for epidemic SIR modeling (48, 49). A smaller
data set (March 22 to May 7, 2020) was analyzed in a previous work (50).

SIR Model. The SIR model adopted herein assumes that the individual pop-
ulation in the county compartment can be categorized into three classes:
susceptible (S), infectious (I), and recovered or removed (R). The dynamical
SIR system subjected to local (i.e., county scale) mass action law is expressed
as follows (16):

dS
dt

= −β I
So

S + FS, [6a]

dI
dt

= +[(β 1
So
)S − γR][(1 − ϕ)I + ϕ∫∫p(x − x’, y − y ’)I(x’, y ’)dxdy] [6b]

, and

dR
dt

= +γRI, [6c]

where Fs represents the influx rate of susceptible (i.e., population flow) into
the pool from within the county-level population of size N. Thus, S + I + R ≤
N at the county scale. The term So denotes the total number of infected
because of the first wave of the Covid-19 infections. Note that instead of the
first wave of the Covid-19 infections, the total susceptible population can be
introduced in the denominator as common in mass action mixing models.
However, in that case, as the susceptible population flux (i.e., Fs) is intro-
duced into the model, the denominator must be updated at each time step
according to the new population. This reduces the model stability and lends
the model to be less practical. Therefore, the total population infected
within the first epidemic wave (i.e., a constant parameter defined as So) was
initially estimated based on the reported number at the end of the first
phase. Then, So was calibrated along with other key parameters by fitting
the model to reported daily confirmed cases. The terms β and γR are known
as the rates of infection and recovery, respectively. The ratio β/γR represents
the average number of secondary infections caused by a primary case, which
is expressed as Rb, defined as the reproduction number based on the be-
havior of an individual. By contrast, the effective reproduction number, Re, is
obtained by fitting to the observed number of cases, and it ranged from 2.0
to 7.0 for Covid-19 (16)—but a global convergence to 4.5 has been recently
reported when γR = 1/14 d−1. Note that the behavior-based reproduction
number Rb defined herein is a time-varying entity, reflecting exposure
pathways, potency of the disease, and physical constraints to its transmission
at the individual scale through β. The term β includes the multiplicative ef-
fects of contact probability between individuals and disease transmission,
leading to infections probability conditioned upon contract. Therefore, in-
dividual’s precaution behaviors such as social distancing and wearing masks
will likely reduce the value of Rb. The values of Rb and Fs are related, and
knowing one of them would provide the other.

The parameter ϕ represents the percentage of infections migrating across
counties per unit time. The integral term is a convolution, and p(x, y) is the
kernel function, assumed herein to be Gaussian in space, and therefore has
two parameters, L and σ. In the steady-state limit with a pointwise initial
infection and for a spatially uniform susceptible population, the Gaussian
kernel recovers the diffusion predicted steady-state front speed, which is
why this kernel was chosen here. The parameter L denotes the length of the
kernel function, indicating the maximum counties that an individual in-
fected case can travel. The parameter σ denotes the variance of the distri-
bution within the kernel. The convolution of a multifractal field is illustrated
in Fig. 2B. The kernel function was only performed to the infectious class for
simplicity. However, additional simulations were conducted by including the
same kernel term for susceptible and recovered classes, and the simulated
results obtained from the two models were nearly identical (SI Appendix,
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Figs. S13 and S14). This indicates that the dynamics of the infections are not
restricted by availability of susceptible cases, which is due to the larger
susceptible population compared to the infectious population. An immobile
SIR model, assuming isolated counties with no migration, was also run for
comparison (label 3, Fig. 2A). Note that the original SIR model is recovered
when setting Fs and ϕ to zero. We are assuming herein that the travel into
and out of the compartment (i.e., the county scale) is small when compared
to the total population in the county, and thus, the N is invariant with re-
spect to time. It is to be noted here that when ϕ = 0, the equilibrium state is
disease free (I = 0), along with R = 0 and S = N, necessitating an Fs = 0 at
equilibrium consistent with the original SIR.

The SIR simulations were run for 250 d, starting on Feb 15, 2020, to predict
the temporal evolution of infected cases based on the local population
(i.e., within each county-scale simulation cell). The initial value of Rb was
taken as Ro, estimated to be 4.5, taking into account Covid-19 data for all US
states, and agrees with other estimates derived from 57 countries with initial
minimal intervention (16). Herein, we assumed a relatively large Rb ∼5.0 at
the beginning of the pandemic and linearly decreased Rb from 5.0 to 3.0
between mid-March and mid-April, taking into account stay-at-home orders
and social distancing; then, we decreased Rb from 3.0 to 2.0 between later
May and later June to take into account further precautions of the disease
after the conditional reopening (e.g., wearing masks are mandatory in
stores in many states).

The parameter γR is often interpreted as the inverse of the mean recovery
period. With regards to Covid-19, the time period for mild illness from the
onset of symptoms to natural recovery is, on average, 2 wk; therefore, the
value γR is estimated to be 1/14 d−1 (16). Note that the product of Rb and γR
represents the transmission rate of the infections; therefore, the Rb reduc-
tion also accommodates the γR increase, which reflects, for example, im-
proved hospital capacity. The initial spatial distribution of the population
(i.e., N) across counties was assumed to be multifractal, consistent with the
observations. The initial infected cases Io were randomly seeded in the do-
main by a uniformly distributed random number between 0 and 1, ac-
counting for ∼0.4% of the susceptible cases. Notice that the Io selected
herein causes the model to have a better match to the observed data. A
different percentage of Io was tested in the model; it turns out that the
different percentage of Io only translates the SIR curves in time, but the
overall temporal shape of the curves is not appreciably altered.

Traditionally, the contact and dispersal of a contagious disease has been
modeled using diffusion equations in which the spreading of the disease
relies on the density gradient of infections between two adjacent com-
partments (label 1, Fig. 2A), expressed as follows:

dI
dt

= +[(β 1
N
)S − γR]I + ∇(D∇I), [7]

where the term ∇(D∇I) denotes density-driven migration of infections, and D
denotes the diffusion coefficient of the disease. Diffusion models may un-
derestimate the extent of epidemic spreading, as they represent “spillage”
to neighboring communities but do not account for long-distance travel
across more than two counties and unavoidable travel to severe epidemic
compartments (i.e., regions). One solution to this problem is to simulate the

advection of people (i.e., travel) using agent-based models, discussed earlier.
An alternate approach is to use the kernel approach (Eq. 6).

Multiphase Population Release Mechanism. With the Covid-19 pandemic in
near constant fluctuation in the United States, the US states adapted rapidly
with rules and regulations. Between March 21 to April 6, all the US states
issued stay-at-home orders to mitigate the spread of Covid-19. Such travel
restriction has been identified to dramatically decrease the number of
travelers nationally and internationally; reports from the Transportation
Security Administration (TSA) indicate that at the end of March after the
Covid-19 outbreak, the numbers of air passengers dropped ∼96%. On May
20, all states began to partially lift restrictions, and on June 29, 48 US lo-
cations and eight host nations met the conditions to lift travel restrictions;
such conditional reopening polices subsequently resulted in a gradual in-
crease in TSA traveler numbers (Fig. 2C). However, due to a second wave of
Covid-19 infections in the United States, many states introduced a “mitiga-
tion” plan for areas with increasing positive test rates. For example, in
Oregon, in late July, because of an increase in Covid-19 cases, Umatilla
County moved back to stay-at-home status, while Morrow and Malheur
Counties moved from Phase 2 reopening back to Phase 1 reopening.

To take into account such policy-modulated population flow, we incor-
porated multiphase population release into the SIR model by allowing the
number of susceptibles to increase over time rather than assuming that the
whole population is susceptible at the initial outbreak. Thus, the initial
susceptible population was labeled Sini, which is estimated based on the
occurrence of the first epidemic peak (SI Appendix, Fig. S15). The calibrated
values for each state are reported in SI Appendix, Table S1. Subsequently,
the number of susceptibles was increased at the rate FS(t), and therefore, the

susceptible population flow was Sin,t = ∫ t
0FS(t)dt.

Numerical trials were performed to calibrate the pattern of the Fs function
along with the parameter Sini, So, and ϕ by fitting the model to daily con-
firmed cases for each US state. Note that developing a systematic optimi-
zation algorithm seems unlikely. This is because the fitting is based on the
duration and shape of epidemic curves, which diverged across US states
according to their orders and rules. Therefore, calibration has to be per-
formed state by state to reflect these differences in orders and rules. The
simulations started with an initial approximation of Sini, So, and ϕ along
with a multifractal population field, and then numerical trials were per-
formed to calibrate values of these parameters and temporal patterns of
piecewise linear function Fs until a match between the model and obser-
vation was achieved. The scheme of calibration is illustrated in SI Appendix,
Fig. S15. The calibrated Fs were reported in Fig. 4 and SI Appendix, Fig. S10,
and the calibrated values of Sini, So, and ϕ were reported in SI Appendix,
Table S1.

Data Availability.All study data are included in the article and/or SI Appendix.
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